Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mar Drugs ; 19(2)2021 Jan 27.
Article in English | MEDLINE | ID: covidwho-1969360

ABSTRACT

Inorganic polyphosphate (polyP) is a widely distributed polymer found from bacteria to animals, including marine species. This polymer exhibits morphogenetic as well as antiviral activity and releases metabolic energy after enzymatic hydrolysis also in human cells. In the pathogenesis of the coronavirus disease 2019 (COVID-19), the platelets are at the frontline of this syndrome. Platelets release a set of molecules, among them polyP. In addition, the production of airway mucus, the first line of body defense, is impaired in those patients. Therefore, in this study, amorphous nanoparticles of the magnesium salt of polyP (Mg-polyP-NP), matching the size of the coronavirus SARS-CoV-2, were prepared and loaded with the secondary plant metabolite quercetin or with dexamethasone to study their effects on the respiratory epithelium using human alveolar basal epithelial A549 cells as a model. The results revealed that both compounds embedded into the polyP nanoparticles significantly increased the steady-state-expression of the MUC5AC gene. This mucin species is the major mucus glycoprotein present in the secreted gel-forming mucus. The level of gene expression caused by quercetin or with dexamethasone, if caged into polyP NP, is significantly higher compared to the individual drugs alone. Both quercetin and dexamethasone did not impair the growth-supporting effect of polyP on A549 cells even at concentrations of quercetin which are cytotoxic for the cells. A possible mechanism of the effects of the two drugs together with polyP on mucin expression is proposed based on the scavenging of free oxygen species and the generation of ADP/ATP from the polyP, which is needed for the organization of the protective mucin-based mucus layer.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dexamethasone/pharmacology , Mucin 5AC/biosynthesis , Mucin 5AC/drug effects , Quercetin/pharmacology , A549 Cells , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , COVID-19 , Dexamethasone/chemistry , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Humans , Magnesium/chemistry , Mucin 5AC/genetics , Mucins/biosynthesis , Mucins/chemistry , Nanoparticles , Particle Size , Plants/chemistry , Polyphosphates/chemistry , Quercetin/chemistry , Reactive Oxygen Species
2.
Sci Rep ; 11(1): 17263, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1550348

ABSTRACT

Dexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo. Dex-NV were just as effective as the free drug against primary human leukemia cells in vitro and in vivo. Importantly, high levels of DMSO solvent were not required in the NV formulations. Broad distribution of NV was seen rapidly following inoculation into mice. NV accumulated in major organs, including bone marrow and brain, known sanctuary sites for ALL. The study describes a non-toxic, more easily scalable system for improving Dex solubility for use in cancer and can be applied to other medical conditions associated with inflammation.


Subject(s)
Dexamethasone/administration & dosage , Drug Delivery Systems/methods , Nanostructures/chemistry , Polymers/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/chemistry , Antineoplastic Agents, Hormonal/pharmacokinetics , Child , Dexamethasone/chemistry , Dexamethasone/pharmacokinetics , Drug Liberation , Humans , Kaplan-Meier Estimate , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Treatment Outcome , Tumor Cells, Cultured , Young Adult
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1463704

ABSTRACT

The delivery of a dexamethasone formulation directly into the lung appears as an appropriate strategy to strengthen the systemic administration, reducing the dosage in the treatment of lung severe inflammations. For this purpose, a hyaluronic acid-dexamethasone formulation was developed, affording an inhalable reconstituted nanosuspension suitable to be aerosolized. The physico-chemical and biopharmaceutical properties of the formulation were tested: size, stability, loading of the spray-dried dry powder, reconstitution capability upon redispersion in aqueous media. Detailed structural insights on nanoparticles after reconstitution were obtained by light and X-ray scattering techniques. (1) The size of the nanoparticles, around 200 nm, is in the proper range for a possible engulfment by macrophages. (2) Their structure is of the core-shell type, hosting dexamethasone nanocrystals inside and carrying hyaluronic acid chains on the surface. This specific structure allows for nanosuspension stability and provides nanoparticles with muco-inert properties. (3) The nanosuspension can be efficiently aerosolized, allowing for a high drug fraction potentially reaching the deep lung. Thus, this formulation represents a promising tool for the lung administration via nebulization directly in the pipe of ventilators, to be used as such or as adjunct therapy for severe lung inflammation.


Subject(s)
Dexamethasone/chemistry , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Pneumonia/drug therapy , Administration, Inhalation , Aerosols , Dexamethasone/pharmacology , Humans , Hyaluronic Acid/pharmacology , Nanoparticles/therapeutic use
4.
SLAS Discov ; 26(3): 345-351, 2021 03.
Article in English | MEDLINE | ID: covidwho-955395

ABSTRACT

A novel bioinformatic approach for drug repurposing against emerging viral epidemics like Covid-19 is described. It exploits the COMPARE algorithm, a public program from the National Cancer Institute (NCI) to sort drugs according to their patterns of growth inhibitory profiles from a diverse panel of human cancer cell lines. The data repository of the NCI includes the growth inhibitory patterns of more than 55,000 molecules. When candidate drug molecules with ostensible anti-SARS-CoV-2 activities were used as seeds (e.g., hydroxychloroquine, ritonavir, and dexamethasone) in COMPARE, the analysis uncovered several molecules with fingerprints similar to the seeded drugs. Interestingly, despite the fact that the uncovered drugs were from various pharmacological classes (antiarrhythmic, nucleosides, antipsychotic, alkaloids, antibiotics, and vitamins), they were all reportedly known from published literature to exert antiviral activities via different modes, confirming that COMPARE analysis is efficient for predicting antiviral activities of drugs from various pharmacological classes. Noticeably, several of the uncovered drugs can be readily tested, like didanosine, methotrexate, vitamin A, nicotinamide, valproic acid, uridine, and flucloxacillin. Unlike pure in silico methods, this approach is biologically more relevant and able to pharmacologically correlate compounds regardless of their chemical structures. This is an untapped resource, reliable and readily exploitable for drug repurposing against current and future viral outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Computational Biology/methods , Drug Repositioning/methods , Algorithms , COVID-19 , Cell Line , Data Mining/methods , Databases, Pharmaceutical , Dexamethasone/chemistry , Dexamethasone/pharmacology , Drug Discovery/methods , Humans , Lucanthone/pharmacology , SARS-CoV-2/drug effects
5.
J Phys Chem Lett ; 11(23): 10256-10261, 2020 Dec 03.
Article in English | MEDLINE | ID: covidwho-933650

ABSTRACT

The thermally activated dynamics of methyl groups are important for biochemical activity as they allow for a more efficient sampling of the energy landscape. Here, we compare methyl rotations in the dry and variously hydrated states of three primary drugs under consideration to treat the recent coronavirus disease (COVID-19), namely, hydroxychloroquine and its sulfate, dexamethasone and its sodium diphosphate, and remdesivir. We find that the main driving force behind the considerable reduction in the activation energy for methyl rotations in the hydrated state is the hydration-induced disorder in the methyl group local environments. Furthermore, the activation energy for methyl rotations in the hydration-induced disordered state is much lower than that in an isolated drug molecule, indicating that neither isolated molecules nor periodic crystalline structures can be used to analyze the potential landscape governing the side group dynamics in drug molecules. Instead, only the explicitly considered disordered structures can provide insight.


Subject(s)
Antiviral Agents/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , COVID-19 , Crystallography, X-Ray , Dexamethasone/chemistry , Hydroxychloroquine/chemistry , Methylation , Models, Molecular , Water
SELECTION OF CITATIONS
SEARCH DETAIL